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Abstract— The finite element method can be used to compute
the electromagnetic fields induced into the human body by envi-
ronmental extremely low frequency fields. However, the electric
properties of tissues are not precisely known and may vary
depending on the individual, his/her age and other physiological
parameters. We propose to account for some uncertainties on the
conductivities of the brain tissues and to spread them out to the
induced fields by means of a non-intrusive approach based on
the chaos Hermite polynomial with the finite element method as
a black box [3], [4].

I. INTRODUCTION

The finite element method (FEM) can be used for computing
the electric field induced into the human body by extremely
low frequencies (ELF) fields [2]. To this aim, the electrical
properties of the different tissues (conductivity, permittivity)
are required. Unfortunately, these properties are subjected
to uncertainty, and their determination is still a matter of
discussion. Moreover, most of available data has been obtained
from measurements on different animals and extrapolated to
humans. Therefore, it is interesting to model and quantify the
effect of these uncertainties on the electromagnetic fields in-
duced into the human body. A good statistical characterisation
could be obtained by applying a Monte-Carlo (MC) method.
It is very time-consuming though (some days in our model).
In this work, we use non-intrusive probabilistic algorithms,
namely a chaos polynomial (CP) approach. Assuming that
only the variances of conductivities are finite [3], [4], this
kind of method allows to obtain a complete characterization
of the induced field in a probabilistic dimension with a
reduced computational cost, a few hours in comparison to MC
simulations.

II. INCORPORATION OF STOCHASTIC UNCERTAINTY

A. Deterministic framework

In the deterministic context of ELF magnetic fields, it is
generally assumed that the reaction field due to eddy currents
in living tissues is negligible. This allows to develop specific
formulations, where the computational domain Ω is limited
to the human body. In this work we use the φ − a FE
formulation with the electric scalar potential φ to determine
and the magnetic vector potential a (magnetic flux density
b = curla) known a priori, as the reaction field is negligible.
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By weakly imposing div j = 0 with the boundary condition
n · j|∂Ω = 0, the φ− a formulation reads [2]:

(σ ∂ta, gradφ′)Ω+(gradφ, gradφ′)Ω = 0 , ∀φ′ ∈ H(grad ,Ω) .
(1)

As human model, we consider the the phantom ZOL [2]
available from the Visible Human project [1]. The electrical
conductivity values σ are taken from [5]. The flux density
source is a 50 Hz uniform vertical field bz = 1 mT. In the
literature concerning the protection against ELF fields, three
scalar values are generally computed from the current density
j for each organ: the (spatial) average jA, the maximum value
jM , and the 99% percentile [6]. In particular, the ICNIRP
recommendations focus on jM . Similar definitions exist for
the electric field e.

B. Uncertainties

In this paper, we are mainly concerned with the fields
induced in the head. The conductivities in the brain σB(ω),
and of the cerebellum σC(ω) are modeled within a probabilis-
tic framework, by assuming that they are random variables.
Therefore, the average jA, the maximum jM or the 99%
percentiles jP of the induced fields are random as well. In
particular, by applying the maximum entropy principle [7] we
model (arbitrarily) σB(ω) and σC(ω) (in S/m) as independent
random variables, uniformly distributed between the 1/3 and
three times the values in [5], i.e.

σB(ω) ∼ U([0.0178 ; 0.160]) , (2)
σc(ω) ∼ U([0.0317 ; 0.286]) . (3)

C. The Non -Intrusive Approach

As the conductivities of the brain and the cerebellum are
two independent random variables of finite variance, we can
expand them as a truncated series of order pin in the two-
dimensional Hermite polynomials of a random gaussian vector
ξ(ω) = (ξ1(ω), ξ2(ω)), known as Hermite chaos polynomi-
als [4]:

σB(ω) ≈
Pin∑
i=0

σBiψi(ξ(ω)) , (4)

σC(ω) ≈
Pin∑
i=0

σCiψi(ξ(ω)) , (5)

where σBi and σCi are scalar values that depend on the
probabilistic law of the conductivities, Pin = Cpin

2+pin
is the
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number of two-dimensional polynomial of order smaller than
pin, and ψi is the ith two-dimensional Hermite polynomial.

The stochastic problem is solved by means of a CP decom-
position of both the conductivity and the induced fields [4].
There is only an assumption on the conductivities, with no a
priori hypothesis on the probabilistic distribution shape of the
average jA, the maximum jM or the 99% percentiles jP of
the induced fields.

Those induced fields – the average current density in the
brain jA(ω) = jA(ξ(ω)) – are calculated by the FEM from
any pair of values (σB(ξ(ω)), σC(ξ(ω))). The average density
belongs to a space that can be spanned by the polynomials
ψ(ξ(ω)) and can thus be written as a truncated series to an
order pout:

jA(ω) =

Pout∑
i=0

jA
mψm(ξ(ω)) . (6)

The unknown real coefficients jA
m are computed taking into

account the orthogonality properties of the Hermite polynomi-
als:

jA
m
i =

E[jA(ω)ψm(ξ(ω))]

E[ψm(ξ(ω))2]
, (7)

with E[·] the mathematical expectation. The denominator can
be computed analytically. A Hermite Gauss integration scheme
with d points is used to determine the numerator, which is an
integral [4]:

E[jA(ω)ψm(ξ(ω))] ≈
d∑

i=1

...

d∑
j=1

wi,j(jA((t1, t2)i,j))ψm((t1, t2)i,j), (8)

where (t1, t2)i,j is the i, j-th Gauss point, and wi,j the associ-
ated weight in the two-dimensional Cartesian rule. Therefore,
the deterministic problem must be solved d2 times, with
the conductivity evaluated through (4) and (ξ1(ω), ξ2(ω)) =
(t1,= t2)i,j , i, j = 1, . . . , d.

III. RESULTS AND DISCUSSION

The non-intrusive polynomial chaos decomposition methods
are governed by three parameters: pin determines the accuracy
of the approximation made on the input random variables; pout
is the order of truncation of the induced fields (maximum,
average and percentiles of the electric field or current density)
and d is the number of integration points. We adopt pin = 16,
pout = 6 or 10, d = 14.

The probabilistic density of the average jA, the 99% per-
centile jP and the maximum jM current density in the brain
are depicted in Fig. 1 for pout = 6 and 10. The convergence
of the non-intrusive method can be clearly observed. The
mean and standard deviation of jA are 1.2 10−4 A/m2 and
4.3 10−5 A/m2, respectively. The probabilistic density of jA
presents the sharpest peak among the three considered quan-
tities. Note that the values higher than the mean are more
probable than the rest. With regard to the 99% percentile
jP in the white and grey matter of the brain, the mean is

1.9 10−4 A/m2 with a standard deviation of 6.8 10−5 A/m2. It
is more dispersed around the mean than the jA. Once again the
right tail is slightly more probable than the left one. Finally, the
maximum jM in the brain presents a mean of 3.2 10−4 A/m2

and a standard deviation of 1.3 10−4 A/m2. This last parameter
is the most spread (the standard deviation and the mean have
the same order of magnitude and the probabilistic density is the
largest). It is clear that the probability to be above 3 10−4 A/m2

is nearly 0 for jA and jP . It is not negligible anymore for
jM . Note that the maximum value of computed fields may be
(strongly) influenced by the FE mesh quality.
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Fig. 1. Probabilistic density of the averaged (jA), 99-percentile (jP ) and
maximum (jM ) current density in the brain

Further details on the non-intrusive probabilistic method
will be provided in the full paper. Special attention will be
paid to the influence of pin, d and pout and some probability
threshold. Results on the induced electric field and in the
cerebellum will be presented as well.
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